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Abstract

Researchers have sometimes argued that the recent ascent in stock prices could be
explained in some measure by changes in expectations about long-run future
dividend growth. For example, Barsky and De Long (1993) argue that a small
random walk component in the growth rate of dividends, when extrapolated into
the future, is capable of reproducing the large swings in US stock prices over the
period 1880–1990. I show that the hypothesis of a nonstationary permanent growth
rate of dividends is inconsistent with the Gordon growth model.

* I thank J Amato, P Andersen, J Bisignano, S Gerlach, G Sutton and K Tsatsaronis for many valuable comments and
suggestions. I also thank, without implicating, M Jeanblanc for pointing out an error in a previous draft.





Contents

1. Introduction  ....................................................................................................................... 1

2. Model  ................................................................................................................................ 2

3. Conclusion  ........................................................................................................................ 4

Appendix  ..................................................................................................................................... 5

References  ................................................................................................................................... 7





1

1. Introduction

To explain long-run swings in the US stock market, Barsky and De Long (1993) – hereafter BD –

computed “warranted” stock prices on the assumption that investors extrapolate a long distributed lag

of realised dividend growth rates into the future. Their approach combines the standard Gordon model

of stock price determination with a model of dividend changes characterised by a time-varying, albeit

small, persistent component. The thrust of their argument is that small but permanent shocks to

dividend growth rates may have a dramatic impact on stock prices. This goes some way towards

explaining the documented “overreaction” of asset prices to long swings in dividends, thus restoring

the power of the conventional present-value model.

In contrast to Mankiw, Romer and Shapiro (1985, 1991) and Kleidon (1986), who emphasise that the

log dividend process is close to a random walk, BD postulate an environment in which it is the growth

rate of dividends that contains a random walk. The two approaches are distinct, since in the former

case an innovation in the growth rate of dividends is assumed to be temporary, whereas in the latter it

is expected to persist indefinitely. Despite this difference, BD predicate their analysis on the Gordon

valuation formula, a variant of the present-value model which obtains when the rate of dividend

growth is constant.

BD’s methodology has been followed by other researchers. Carlson and Sargent (1998), for instance,

consider a similar setup where the growth of earnings replaces that of dividends. A reason for this may

be that it has an important bearing on policy. Indeed, if investors expect part of the recent rise in

dividends to be permanently incorporated in future dividend growth, the recent ascent in stock prices

might be deemed appropriate. By contrast, stationary models of dividend growth rates would generally

fail to conclude that stocks are rationally priced, given current trends of dividend payments.

Applying a formula which does not hold when the growth rate of dividends is nonstationary is

logically inconsistent. Indeed, BD recognise (p. 299) that the formula

“does not hold exactly in a stochastic model for the dividend process given by (3): [it] does not allow

prices today to be influenced by investors’ knowledge that they will be revising their estimate of g in

the future.”

They continue:

“But for simplicity we ignore these higher-order corrections here and use [it] as our formula for the

log of warranted stock index price.”

However, the situation is worse than BD acknowledge. In their model, outlined below, the sum of

expected discounted dividends fails to converge, and Gordon’s valuation formula is not applicable.
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2. Model

With a constant required rate of return, the standard version of the present-value model is

( ) 



 += +

−∞
=∑ jt

j

jtt DrEP 1 1 , where Pt is the real stock price, Dt+j the real dividend paid at time t + j

and r the real rate of return (or discount rate). It is useful to rewrite the formula in terms of future

dividend growth rates as:
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t / −= +  denotes the average dividend growth rate between t and t + j, dt is the log of

dividends, and the discount rate has been renormalised as ρ = ln(1 + r). In the special case of a

constant growth rate with exp ,1 gg j
t +=  formula (1) simplifies to:
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which is the well-known Gordon growth model (1962).

If the dividend growth rate varies over time, (2) is not directly applicable. However, one may wish to

consider (2) as an approximation if dividends are expected to grow at a constant rate in the future, i.e.

if t
j

t gEg =  for all j. As an extreme case, an investor certain that the mean dividend growth rate is a

fixed but unknown parameter of the economy could extrapolate it from period to period and substitute

the resulting estimate gt for g in the Gordon formula. However, Jensen’s inequality shows that

substituting expected for realised growth in (1) induces a downward bias. The empirical relevance of

that bias depends in turn on the specification of the underlying process governing dividends.

It is important at this point to understand intuitively the complications that arise when the dividend

process is stochastic. This assumption implies that the average growth of dividends j
tg  from t to t + j

may be greater than ρ with positive probability, rendering the exponential in (1) greater than unity. If

this occurs only finitely many times in the future, there is no convergence problem and Pt in (1) is

well-defined. If not, the probability that this happens must decrease sufficiently fast as j increases.

Failing this, Pt would not be well-defined, as more and more terms would contribute in a non-

negligible way to the infinite sum.1
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condition for convergence is thus that Prob ( ) 0  j as 0  →→ρ≥j
tg .
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Assume, for example, that ∆dt contains a unit root. As the length of the horizon j increases, the range

of values taken by future growth rates will increase and so will the variance of their arithmetic

mean .j
tg  This holds even though, as of time t, j

tg itself has a constant expectation equal to gt. With

the tails of the distribution growing fatter around its fixed mean, the probability that j
tg  overshoots the

constant discount rate ρ keeps increasing and drives the stock price to infinity.

Returning to BD’s model, one notes that the specification of their underlying dividend process relies

on two assumptions. First, dividend growth is modelled as the sum of a white-noise innovation, εt, and

a permanent growth component gt-1:

(3) ttt gd ε+=∆ −1

Second, the permanent growth component gt is revised each period by a small fraction of current

dividend changes:

(4) ( ) ttt dgg ∆θ−+θ= − 11

where θ is a parameter close to one. In other words, the permanent growth component is a geometric

average of past dividend changes, with rate of decay 1 – θ. Equations (3–4) are identical to (3–4) in

BD.2 The two assumptions taken together imply that gt = gt–1 + (1 – θ) εt is itself a random walk.

By (3), this implies that ∆dt contains a unit root. As argued above, it follows that the stock price is

infinite. A formal proof is given in the Appendix.

It is the fast rate at which the volatility of future average growth increases that prevents the infinite

sum defining present value in (1) from converging. The following back-of-the-envelope calculation

casts light on this issue. We need the following property of random variables: if ln x is normal with

mean µ and variance σ2, then 1n E(x) = µ + σ2 /2. Here, j
tg  tends to a conditionally normal

distribution, with mean gt and variance jσ2, where σ2 is an empirically “small” number depending on

the value of θ. Accordingly, the jth term in (1) is approximately log-normal for large j, with mean

exp {–j(ρ–gt) + j3 σ2 /2}. We see that, when j → ∞, the variance term in j3 causes the expectation to

explode. (The argument is only heuristic, since j
tg  does not have a well-defined limit distribution.)

                                                     

2
 In a footnote BD point out that, instead of treating (2) as an approximation to the pricing rule, one could treat (3–4) as an

approximation to the dividend process if permanent growth is governed by the following stochastic differential equation:
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However, Ito’s formula shows that yt  = ( r – gt) / σε (1– θ) satisfies:

t
t

t dW
y

dt
dy −=

and is thus a Bessel process of dimension 3. It follows that yt → ∞ as t → ∞. The fact that growth rates become arbitrarily
large and negative raises doubts about the relevance of this formulation.
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3. Conclusion

This note has investigated whether the assumption of a “permanent” growth rate of dividends is

consistent with a constant discount rate. It was found that the infinite sum defining present-value

diverges when the dividend growth rate gt has a random walk component. Of course, it may be

possible to restore convergence in the present-value model by assuming that the forcing process for

dividends contains a very persistent but stationary autoregressive root instead of an exact unit root.

The inferences above, however, imply that as this root tends to one, the associated stock price tends to

infinity and cannot be approximated by the Gordon valuation formula. On the other hand, a lower

autoregressive root would mean that gt is less correlated with past dividend growth rates. This runs up

against the very intuition of the model, which views past dividend growth rates as the main driving

force behind revisions in expected future dividend growth. Whether the model retains considerable

power under the present context remains uncertain, since one cannot embed the assumption of

nonstationarity in dividend growth in the present-value model without considering its long-run

theoretical consequences.

This leaves us with the issue of which assumption of the Gordon model should be relaxed for the

present-value model with nonstationary dividend growth to remain meaningful. One way to restore

convergence might be to drop the assumption of a constant discount rate and derive instead the

required rate of return endogenously within an equilibrium asset pricing model. I have not been able to

find a simple model, with standard specification of preferences, that would be consistent with

nonstationarity in dividends. How to value equity in the present context seems to remain an open

question.
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Annex

Proposition 1

When j → ∞, the variable j
tgj 2/1− converges in distribution to a normal variable with mean 0 and

variance ( ) .3/1 22
εσθ−

Proof. Let nt
u
n duX +∆=  for some small u > 0. From (3–4), one gets the scalar difference equation

( )11 −++− θε−ε+= ntnt
u
n

u
n uXX

It is readily verified that the spectrum at 0 of the innovation ε t+n – θ εt+n–1, defined as the infinite sum

of its autocovariances at all leads and lags, is ( ) 221 εσθ− . It follows from weak convergence arguments

that the process u
nX  converges weakly to the process x = (1–θ) σε w, where w is a standard Brownian

motion, as u → 0; e.g. Kushner (1984), pp. 91–3. In particular, choosing uj = 1, one sees that:

j
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hence the result.

To see that the standard present-value model breaks down, consider the jth element in the infinite sum

of expected future dividends. If U is a random variable with the limit distribution of proposition 1, and

ϕ some strictly positive, bounded continuous function3 such that ϕ(x) ≤ exp {–jρ + j3/2 x} for all j, one

has:

                                                     

3
 For example, the envelope ( ) { }
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x
x x  of all functions ϕα(x) = exp {–αρ + α3/2 x} for α > 0.
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a strictly positive number. Since discounted expected future dividends are bounded away from 0, their

infinite sum defining present value diverges.
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