
Design Flow for HW / SW Acceleration Transparency in the
ThumbPod Secure Embedded System

David Hwang
Bo-Cheng Lai

Patrick Schaumont
Kazuo Sakiyama

Yi Fan
Shenglin Yang

Alireza Hodjat
Ingrid Verbauwhede

UCLA Electrical Engineering Department

{dhwang, schaum, yifan, ahodjat, bclai, kazuo, shengliny, ingrid}@ee.ucla.edu

ABSTRACT
This paper describes a case study and design flow of a secure
embedded system called ThumbPod, which uses cryptographic
and biometric signal processing acceleration. It presents the
concept of HW/SW acceleration transparency, a systematic
method to accelerate Java functions in both software and
hardware. An example of acceleration transparency for a Rijndael
encryption function is presented. The embedded prototype
hardware platform is also described. Acceleration transparency
yields software and hardware performance gains of 333X.

Categories and Subject Descriptors
E5 [Case Studies]; E3 [HW/SW Co-Design]: specification,
modeling, co-simulation and performance analysis, system-level
scheduling and partitioning.

General Terms
Performance, Design, Experimentation.

1. INTRODUCTION
The field of embedded systems is growing at a rapid rate, as

evidenced by the burgeoning market for cellular phones, PDAs,
digital camcorders, smart cards, and other intelligent portable
devices in the last decade or so. Recent interest has piqued in
security of embedded systems, as many of these systems contain
or transmit sensitive data. Application convergence in embedded
systems is also another area of interest, as hybrid solutions of
phones and PDAs, GPS receivers and watches, etc. enter the
marketplace.

This paper describes the design flow of a secure embedded
system called ThumbPod [1]. ThumbPod is a driver for our
research in domain-specific processing techniques and design
methods. It is embedded system which consists of a 32-b Sparc
microcontroller, a fingerprint image sensor, signal processing
hardware acceleration, cryptographic hardware acceleration, and a
memory module enclosed within a form factor similar to an
automobile keychain transmitter. A concept drawing is seen in
Figure 1. ThumbPod will offer flexible communication via two
ports: 1) an infrared port for wireless communication and 2) a

USB port for fast wire-line communication. ThumbPod represents
the application convergence of several domains, all of which are
biometrically secured. Potential applications include wireless
credit card payments, keychain flash memory replacement,
universal key functionality (house, car, office), storage of
sensitive medical data, and IR secure printing.

1.1 Cryptography & Biometrics
In the design of ThumbPod, two particular domains require

implementation consideration. The first domain is the domain of
cryptography, in our case secret-key (symmetric-key)
cryptography. Secret-key cryptography is based on the premise
that two users share a secret key that is known only to them. In
order to securely communicate with one another, this key is used
both for encryption and decryption purposes.

The most recent standard for symmetric-key cryptography is
the Rijndael algorithm, which was made into the NIST AES
(Advanced Encryption Standard) in 2001 [2]. For the purposes of
ThumbPod, Rijndael is a block cipher which takes in a 128-b
block of plaintext and produces a 128-b block of ciphertext based
on a 128-b secret key. Arithmetically, the Rijndael algorithm
performs computationally-complex functions such as byte
substitution, mathematic operations over a Galois field GF(28),
row shifting, column shifting, and frequent xor operations. Due to
this complexity, acceleration of the Rijndael function is desirable.

The other domain that requires implementation consideration
is biometric fingerprint signal processing. Fingerprint biometrics
can be used as the means to identify a user to a system. In
ThumbPod, the entire fingerprint verification process is
performed within the embedded system (not on an server). At the
computational core of the fingerprint verification process are the
minutia detection and matching algorithms. These algorithms
require signal processing functionality such as image
enhancement, Fourier transforms, edge detection, etc. Due to the
complexity of signal processing functionality, acceleration for the
fingerprint verification process is also desirable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

Figure 1. ThumbPod concept drawing.

60

5.2

1.2 ThumbPod Authentication Protocol
We have developed a protocol for wireless credit card

transactions which utilizes ThumbPod and its biometric
authentication capabilities. Though the details of the protocol are
beyond the scope of this paper, the protocol in essence is based on
secret-key cryptography using the Rijndael algorithm. In the
protocol, the secret key is a 128-b representation of the user’s
fingerprint. This secret key is stored at the financial institution’s
central server and stored (in a different format) on the user’s
ThumbPod.

In order to make a transaction at a merchant’s register, the
user uses the ThumbPod’s IR port to initiate communication with
the register. A series of challenge and response functions is
negotiated between the user and the financial institution’s central
server, all routed through the merchant’s register (which cannot
interpret the data because it does not posses the key). In the
course of the authentication protocol the user places his finger on
the fingerprint sensor to ensure the ThumbPod is his (and not
stolen or fraudulent). This information is processed within the
ThumbPod and, if a match is made, cryptographic hash functions
and keys are generated using Rijndael and the protocol continues
to its completion.

The protocol is an example of a complex application in which
ThumbPod requires both cryptographic and signal processing
functionality. There are various other protocols for other
ThumbPod applications, all of which share the common
denominators or cryptography and biometric signal processing.
Some applications, such as encryption/decryption for audio and
video systems, require encryption rates beyond the capacity of
embedded software implementations and require hardware
acceleration.

The rest of the paper describes Java acceleration and a design
method called hardware/software acceleration transparency used
to simultaneously allow for selective acceleration as well as
incremental refinement of the design flow.

2. JAVA ACCELERATION
In our embedded design flow, Java was used for its well-

known portability and security advantages [3]. The issue of
portability is important in embedded systems because of their
high processor heterogeneity. Java’s security advantages—such as
a safe memory model, byte-code verification, cryptographic
interface libraries, and the sandbox model—are important in the
design of secure systems.

However, though advantages exist in these domains, Java has
one primary drawback: performance. A Java application is slower
than its counterpart in C, and much slower than its counterpart in
pure hardware. An example of Java’s performance drawback can

be seen in Table 1, where the 128-b input, 128-b key Rijndael
function in Electronic Code Book (ECB) is performed. The Java
(KVM) and C figures are on a 1 mW / 1 MHz Sparc processor.
This configuration is used to emulate an embedded environment.
The ASIC figures are based on a recent implementation
performed by our research group [4]. As can be seen in the table,
a hardware solution is five orders of magnitude superior in both
performance and energy consumption (as measured in Gb/s per
Watt). For streaming encryption applications described in the
previous section, pure embedded software solutions are
inadequate. Hardware acceleration is required.
Table 1. Comparison of 128-b Rijndael on different platforms.

Platform Throughput Power Gb/s / W

Java 450 bits/s 120 mW 0.00042

C 345 Kbits/s 120 mW 0.029

0.18 µm ASIC 2.29 Gb/s 56 mW 35.7

2.1 HW/SW Acceleration Transparency
In order to incorporate software and hardware acceleration

and simultaneously allow for incremental refinement in the design
flow process, we have used a technique called hardware software
acceleration transparency in our design. HW/SW acceleration
transparency is described below in further detail and involves
three closely related items: 1) incremental acceleration, 2) Java
function emulation, and 3) interface transparency.

The goal of acceleration transparency is to begin with Java
code on a workstation and to conclude with an embedded
prototyped system (with hardware acceleration) whose Java code
is identical to the initial code, except for coping with
communication issues and processor and hardware support. The
main consequence of this method is that code writing and
validation becomes easier, providing a gain in terms of
development time and quality.

2.2 Incremental Refinement Acceleration
The first principle of acceleration transparency is incremental

refinement acceleration. In the example shown in Figure 2a, a
Java application calls a Rijndael method. Based upon profiling
results, if the performance of the pure Java solution is inadequate,
it can be accelerated using a C function, as shown in Figure 2b.
Rather than designing a custom interface to the C Rijndael
function, as shown in the dotted line in Figure 2b, the application
accesses the function through the Java Native Interface (JNI). If
profiling and comparison with system specifications determine
that hardware acceleration is required, a crypto-processor can be
designed and interfaced to the Java application. However, this

Figure 2. HW/SW acceleration transparency.

Java Application

Java Application

Java Application

Java Method
Rijndael()

JNI C Function
Rijndael()

JNI C Interface
Rijndael()

Hardware
Crypto-

Processor

Java Application

Java Application

Java Application

Java Method
Rijndael()

JNI C Function
Rijndael()

JNI C Interface
Rijndael()

Hardware
Crypto-

Processor

Java Application

Java Application

Java Application

Java Method
Rijndael()

C Function
Rijndael()

Hardware
Crypto-

Processor

Rijndael()

Rijndael()

Rijndael()

Java Application

Java Application

Java Application

Java Method
Rijndael()

C Function
Rijndael()

Hardware
Crypto-

Processor

Rijndael()

Rijndael()

Rijndael()

(a)

(b)

(c)

(a)

(b)

(c)

(d)

(e)

(f)

(d)

(e)

(f)

61

crypto-processor does not directly interface with the Java
application (as shown in the dotted line in Figure 2c) but is
accessed via assembly instructions by a skeletal C function, which
itself is accessed by the Java application via the JNI. Though it
seems wasteful in terms of overhead to use these interfaces,
incremental refinement allows for a smoother design flow than
creating custom interfaces at each of the design levels. Methods
for the design of domain-specific co-processors can be found in
[11].

2.3 Java Function Emulation
HW/SW acceleration transparency also includes Java function

emulation, a term used to describe the interface relationship
between the Java application and the accelerated function. For
example, a Java application wishes to access a Rijndael function
via a function call rijndael(). From the above discussion, the
Java application has one of three alternatives to obtain the
implementation: 1) a Java function, 2) a C function, or 3)
hardware acceleration.

HW/SW acceleration transparency means that, to the Java
application, each of these alternatives is accessed with the same
Java function signature. In the pure Java case, this is already
apparent: A Java Rijndael function is accessed by the Java
application with a simple function call rijndael(). For C
acceleration, interfaces are constructed such that the Java
application can access the C Rijndael function with the same
function call rijndael(). For hardware acceleration, HW/SW
interfaces to the crypto-processor are designed such that Rijndael
functionality is again accessed by the same function call
rijndael(). In this way, from the Java application vantage
point, each of these alternatives “looks” exactly the same. To the
application, each of the three alternatives takes in the same input,
produces the same output, and is accessed by the same Java
function and hence functionally is the same, as seen in Figure 2d,
Figure 2e, and Figure 2f.

2.4 Interface Transparency
Implicit to the previously mentioned Java function emulation

is the concept of interface transparency. This is also illustrated in
Figure 2. Interface transparency (from which we derive the
transparency term of HW/SW acceleration transparency) means
that to the Java application, all the interfaces in between it and the
acceleration implementation are transparent. In other words, the
Java application can directly “see” the acceleration
implementation (which looks to it like a Java function) regardless
of the number of interfaces. Interface transparency essentially
raises co-processor control a number of abstraction layers directly
to the Java application level.

2.5 Advantages and Potential Drawbacks
Using HW/SW acceleration transparency to facilitate Java

acceleration has the following advantages:

• Smooth interface design flow. Using HW/SW acceleration
transparency, we build our interfaces incrementally. Instead
of tearing down the previous interface and starting from
scratch at each abstraction level, the next interface
incrementally refines the previously constructed interface.
Thus, the interface design flow is smooth and continuous.

• System performance modeling and verification. Using
HW/SW acceleration transparency allows for system
performance modeling at each abstraction level. As each
accelerated function is placed into the overall system, the
hybrid system can be re-benchmarked and the performance
gains ascertained.

• Smooth Java application design flow. As the system
progresses from software to hardware, the original Java
application requires only minor modification. Using HW/SW
transparency implies that each of the acceleration modules
“looks” like the initial Java function in the original
application; hence, the original Java application can remain
the same (or relatively unchanged) from the beginning
functional simulation to the final HW/SW system
implementation.

• Reconfiguration. Once the interface hierarchy is
constructed, a new acceleration module can be appended to
the system through the pre-designed interfaces. A system can
thus be reconfigured in a systematic way.

There are a few potential drawbacks to HW/SW transparency
acceleration:

• Interface overhead. Interface overhead is the cost, in cycle
count, of going through the many layers of interface
abstractions to reach the acceleration module. Obviously, if
the interface overhead outweighs the performance/power
gains of acceleration, then the acceleration should not be
performed. This topic will be discussed in further detail in a
section below.

• Design time. It takes a considerable amount of time to
construct the interface hierarchy from abstraction level to
abstraction level. However, as stated earlier, in the end this
may actually save overall design time due to the incremental
interface construction.

2.6 Rijndael Example
This section of the paper describes an example of HW/SW

acceleration transparency and gives performance measurements
for interface overhead. All the advantages of HW/SW
acceleration transparency described in earlier sections would be
moot if the interface overhead were too large. We are therefore
interested in quantifying the overhead of different abstraction
levels as we go down from C to hardware. Our simulation
environment consists of a cycle-true LEON-Sparc simulator [10].
C code is compiled with the GNU C compiler gcc V3.2 with full
optimization (-O2). Java byte-code is interpreted on the KVM
embedded virtual machine from the Java2 Micro Edition. Thus,
cycle counts for Java are cycles of the target LEON-Sparc which
runs KVM that in turn runs the Java program.

We start by choosing the aforementioned interface
specification of the Rijndael in Java and C. We use a 128-bit key
and 128-bit data block.

Java: int[] rijndael(int[] key, int []din)
C: void rijndael(int din[4], int key[4],
int dout[4])

62

A pure Java implementation for Rijndael on top of KVM
takes 301,034 cycles, as shown in Figure 3. All numbers in the
figure are for one iteration of the Rijndael algorithm, starting from
the Java function call. Startup overhead, such as setting up the C
or Java runtime environments, is not included.

A first refinement to the pure Java model is to substitute the
pure Java implementation with a native implementation in C. A
native method in Java is seen Figure 4a. The corresponding C
implementation is shown in Figure 4b. A function renaming is
required in order to reflect the position of the native method in the
Java class hierarchy. The C implementation then can forward
control to the implementation of the rijndael() function.

The rijndael() function of Figure 4b can, at first, call an
implementation of the Rijndael algorithm in C. When we use the
NIST reference code, we obtain the figures as shown in the
second column of Figure 3. We have 44,430 cycles per Rijndael
call, of which 367 can be attributed to the interfacing part (Figure
3a and b) and the rest to native implementation. Overall we gain
6.8X performance.

The next step is to substitute the C implementation with a
native hardware implementation of the Rijndael algorithm. We
use a hardware coprocessor that completes a 128-bit encryption in
11 clock cycles. This hardware processor is interfaced to the co-
processor interface of the Sparc, and programmed as shown in
Figure 4c. The 128-bit key and data are provided with two
double-word move instructions. In this case, the resulting
performance was 903 cycles. Here, the interfaces turn out to
consume the major part of the cycle budget. The actual encryption
takes only 11 cycles; going from Java to hardware consumes 892
cycles. The performance gain in going from Java to hardware is
now 333X.

We conclude that, while the performance gain of moving
from Java to native implementation is substantial, it is not
completely overhead-free. This overhead is primarily caused by
moving data across the hierarchy levels in the model. We are
refining our method to treat data- and control-flow separately, by
which we expect this overhead to substantially decrease. In any
case, the incremental refinement of the model is a major
advantage from the design-flow point-of-view.

3. DESIGN FLOW ABSTRACTION LEVELS
The design of ThumbPod requires a number of abstraction

levels, with each abstraction level requiring design decisions and
interface construction. The smooth transition from one model to

another allows for successive refinement of the system. This
section enumerates the different abstraction levels and their
particular characteristics.

• Functional Model. The functional model models the entire
ThumbPod financial protocol on a PC environment (Pentium
processor) in Java. As shown in Figure 5a, this model
includes a Rijndael encryption function performed in Java. A
C function is also utilized to perform fingerprint verification
signal processing. A C function rather than Java is used here
in order to incorporate the NIST standard fingerprint
detection algorithms given in C code [13]. This function
interfaces with the application via JNI. Communication
between modules (ThumbPod, register, and authentication
server) is performed in a sequential main method.

• Benchmarking Functional Model. In this abstraction level
in Figure 5b the Rijndael function is accelerated as a C
function for benchmarking purposes. An interface is
constructed which allows the C Rijndael function to interface
with the application via JNI. Rijndael performance
measurements are compared with the functional model.

• Transaction Level Model. In this abstraction level the
communication between modules is modified to allow
objects to communicate with one another in a transaction
level manner, instead of being controlled by a sequential
main method. The transaction-level applications
communicate to one another via socket programming
models.

Figure 4. Rijndael acceleration transparency code.
(a) Java interface calling native C (b) Native C
forwards call to co-processor interface. (c) Co-
processor interface forwards call to co-processor.

Jav a
cy cles

C
cy cles

Rijndael
301,034

��������������������������
��������������������������Interf ace

367

��������������������������
��������������������������
��������������������������
��������������������������

Interf ace
892Rijndael

44,063

Rijndael
11

Co-processor
cy cles

301, 034 44,430 903Total Cycles

(a) Java (b) Java + C (c) Java + C +
Hardware

acceleration

6.8X 333XImprov ement

Figure 3. Rijndael acceleration transparency.

void rijndael(int din[4], int key[4], int dout[4]) {
asm(" mov %0, %%l0" : : "r" (key));
asm(" ldd [%l0], %c0 ! upper double word key

ldd [%l0+8], %c2 ! lower double word key
cpop1 load_key %c0, %c2 ! load the key”);

asm(" mov %0, %%l1" : : "r" (din));
asm(" ldd [%l1], %c0 ! upper double word data

ldd [%l1+8], %c2 ! lower double word data
cpop1 encrypt_ecb %c0, %c2 ! encrypt AES-ECB
cpop1 read_output %c4, %c6 ! retrieve output data”);

asm(" mov %0, %%l2" : : "r" (dout));
asm(" std %c4, [%l2] ! store upper word output

std %c6, [%l2+8] ! store lower word output") ;
}

public final class RijndaelAlgorithm {
static native int[] rijndael(int[] din, int[] key) ;
public static void main(String args[]) {

...
dout = rijndael(key, din);
...

}
}

void Java_RijndaelAlgorithm_rijndael (void) {
ARRAY i1, i2;
ARRAY result = instantiateArray(INT,4);
i1 = popStackAsType(ARRAY);
i2 = popStackAsType(ARRAY);
rijndael(i1->data, i2->data, result->data);
pushStackAsType(ARRAY, result);

}

(a)

(b)

(c)

63

• Embedded SW Implementation Model (PC). Since the
goal of the project is to implement the ThumbPod on an
embedded hardware platform, the next abstraction level is
the embedded software implementation model. In this model,
the ThumbPod application operates on KVM (an embedded
virtual machine) rather than JVM, and communicates with
the accelerated C functions through a customized KNI (JNI
for KVM) interface, rather than a standard JNI interface. In
this model the effects of the constrained embedded
environment can be ascertained.

• Embedded SW Implementation Model (Board). In this
abstraction level, the ThumbPod application is moved
entirely onto an embedded hardware platform. At this time
the application runs on top of KVM operating on a C
backbone on a LEON 32-b Sparc processor (FPGA). The
acceleration continues to be performed in C. The FPGA
board communicates with the PC via a UART and Java
server proxy.

• Embedded HW/SW Implementation Model. In this
abstraction level, hardware acceleration is introduced both
for biometric signal processing and for Rijndael encryption.
The hardware co-processors (implemented within an FPGA)
interface with the Java application via a C interface and KNI.
This abstraction level demonstrates the applicability and
performance of HW/SW acceleration transparency.

4. EMBEDDED HARDWARE PLATFORM
Figure 6 illustrates the prototype architecture of our concept

demonstrator. The software architecture is built upon an

embedded Java virtual machine (KVM) which has been extended
with appropriate platform specializations. The KVM executes on
top of a LEON Sparc processor [10], which in turn is configured
as a soft-core in a Virtex XC2V1000 FPGA. Thus our prototype
has three levels of configuration: Java, C and hardware. The
prototyping environment is an Insight Electronics development
board, which contains besides the FPGA also a 32 MByte DDR
RAM.

The LEON/Sparc core provides two interfaces: a high-speed
AMBA bus interface (AHB) and a co-processor interface (CPI).
Each interface has specific advantages toward domain-specific
co-processors. The CPI offers an instruction- and register-set that
is visible from within the Sparc instruction set, and allows a close
integration of a domain-specific processor and the Sparc. The
AMBA bus requires mapping of a co-processor through the
abstraction of a memory interface. The CPI provides two 64-bit
data ports and a 10-bit opcode port.

The high speed AMBA bus contains a memory interface and a
bridge to the peripheral bus interface (APB). The memory
interface includes an interface to a 32 MByte DDR RAM
memory. The AMBA peripheral bus (APB) contains the
fingerprint processor and two UART blocks. One connection is
used to attach a fingerprint sensor, while the second one is used to
connect an application server. This server is used to download and
debug applications, as well as to experiment with the security
protocol.

Table 2 indicates relevant gate counts and memory footprints
for the application under development.

Register & Server
Java Application

ThumbPod
Java Application

JVM JNI

Java
Rijndael()

Pentium

C Function
Verify()SW

HW
SW
HW

Register & Server
Java Application

ThumbPod
Java Application

JVM JNI

C Function
Rijndael()

Pentium

C Function
Verify()SW

HW
SW
HW

Register/Server
Java Appl.

ThumbPod
Java Appl.

JVM JNI

C Function
Rijndael()

LEON Instruction Set Simulator

C Function
Verify()

JVM

Pentium

SW
HW
SW
HW

Register/Server
Java Appl.

ThumbPod
Java Appl.

JVM KNI

C Function
Rijndael()

LEON Instruction Set Simulator

C Function
Verify()

KVM

Pentium

SW
HW
SW
HW

Register/Server
Java Appl.

ThumbPod
Java Appl.

JVM KNI

C Function
Rijndael()

LEON Processor

C Function
Verify()

KVM

Pentium

C BACKBONE
SW
HW
SW
HW

PC EMBEDDED BOARD

Register/Server
Java Appl.

ThumbPod
Java Appl.

JVM KNI

C Interface
Rijndael()

LEON Processor

C Interface
Verify()

KVM

Pentium

C BACKBONE

HW Proc.
Verify()

HW Proc.
Rijndael()

SW
HW
SW
HW

PC EMBEDDED BOARD

(a) Functional Model

(c) Transaction Level Model

(e) Embedded SW Implementation Model (Board) (f) Embedded HW/SW Implementation Model (Board)

(d) Embedded SW Implementation Model (PC)

(b) Benchmarking Functional Model

Figure 5. Design flow abstraction levels.

64

Table 2. Memory Footprints and CLB Counts.

 Unit
Embedded Java VM 339 Kbyte

Pure Java Rijndael 11311 byte

Java Rijndael calling native 530 byte

Pure C Rijndael (Leon) 39488 byte

C Rijndael calling native 8432 byte

LEON processor 4810 Virtex2 LUT

AES co-processor 2197 Virtex2 LUT

5. PRIOR ART
Interfaces have been the cornerstone of several different

design methodologies. Interface-based design [6] introduces a
clear separation between communication and behavior in a design
with the goal of easier design verification and refinement. This
idea is also followed by communication-based design [8] where
the objective is to create a manageable communications
architecture in a system-on-chip. It has also been shown with
interface synthesis [5] that interface refinements can be done
automatically.

In this work we use interfaces as the driving point of
refinement that move an application, which is initially described a
high abstraction level, onto an embedded target. In coping with
highly complex systems, we prefer to keep as much of the design
work as possible in the higher abstraction levels. We refine only
the parts which violate system specifications in terms of
efficiency. The result is a layer of service interfaces that are
specialized to a particular application. TinyOS [7] takes a similar

approach to specialization, but works bottom-up. Support for top-
down design is important as well.

Accelerator design at the instruction-set architecture level has
shown to yield promising results [12]. Our work demonstrates that
acceleration has an even wider span, and that it is possible to
refine a single specification smoothly into a heterogeneous target
architecture.

6. CONCLUSIONS AND
ACKNOWLEDGEMENTS

This paper introduced the ThumbPod secure embedded
system and described a design flow for the system. The concept
of HW/SW acceleration transparency in relation to Java
acceleration was introduced. HW/SW acceleration transparency is
a systematic method of accelerating Java functions in software
and hardware. Its two basic principles are Java function emulation
and interface transparency. A design flow example of the HW/SW
acceleration process was presented, showing C acceleration yields
a 6.8X performance gain, and hardware acceleration yielding a
333X performance gain compared to a pure Java solution. A brief
description of the embedded prototype architecture was also
presented.

The authors would like to thank the anonymous referees for
their comments. This work has been supported by the Fannie and
John Hertz Foundation (DH), a DAC 2002 Graduate Scholarship
(PS), NSF Grant #0098361, and UC Micro #02-079. We also
thank Gaisler Research for providing the LEON-2 Sparc Core and
for support in setting up the simulation environment.

7. REFERENCES
[1] http://www.ivgroup.ee.ucla.edu/thumbpod
[2] http://www.nist.gov/aes
[3] http://www-106.ibm.com/developerworks/java
[4] H. Kuo, P. Schaumont, and I. Verbauwhede, “A 2.29 Gbits/sec, 56

mW non-pipelined Rijndael AES encryption IC in a 1.8 V, 0.18 um
CMOS technology,” Proc. 2002 Custom Integrated Circuits
Conference, pp. 147-50, May 2002.

[5] S. Vercauteren, B. Lin, and H. De Man, “Constructing application-
specific heterogeneous embedded architectures from custom
HW/SW applications,” Proc. 33rd DAC, pp. 521-6, June 1996.

[6] J. Rowson and A. Sangiovanni-Vincentelli, “Interface-based design,”
Proc. 34th DAC, p.178-83, June 1997.

[7] D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, “A
network-centric approach to embedded software for tiny devices,”
EMSOFT 2001 (First International Workshop on Embedded
Software), Oct. 2001.

[8] M. Sgroi et al., “Addressing system-on-a-chip interconnect woes
through communication-based design,” Proc. 38th DAC, pp 667-72,
June 2001.

[9] T. Callahan, J.Hauser, and J. Wawrzynek, “The Garp architecture
and C compiler,” IEEE Computer, April 2000.

[10] J. Gaisler, The LEON2 IEEE-1754 (SPARC V8) Processor,
http://www.gaisler.com.

[11] P. Schaumont, I. Verbauwhede, “Domain-specific codesign for
embedded security,” IEEE Computer, pp. 68-74, April 2003.

[12] S. Ravi, A. Raghunathan, N. Potlapally, M. Sankaradass, “System
Design Methodologies for a Wireless Security Processing Platform”,
Proc. 2002 Design Automation Conference, pp. 777-782, June 2002.

[13] http://www.itl.nist.gov/iad/894.03/databases/defs/nist_nfis.html

Figure 6. Prototype architecture.

Fingerprint
Sensor

Authentec

xc2v1000
FPGA

Fingerprint
Extraction

amba AHB

Memory Ctrl

APB Bridge

UART

Boot PROM

LEON
Sparc

Crypto
CPI APB

DDR Ctrl
Server

(b)

KVM

Application

Native
Biometrics

Native
Security

JAM

Embedded Software Architecture

(a)

65

